Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chembiochem ; : e202400229, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38700379

RESUMO

Photodynamic therapy (PDT) is a newly emerged strategy for disease treatment. One challenge of the application of PDT drugs is the side-effect caused by the non-specificity of the photosensitive molecules. Most of the photosensitizers may invade not only the pathogenic cells but also the normal cells. In recent, people tried to use special cargoes to deliver the drugs into target cells. DNA nanoflowers (NFs) are a kind of newly-emerged nanomaterial which constructed through DNA rolling cycle amplification (RCA) reaction. It is reported that the DNA NFs were suitable materials which have been widely applied as nanocargos for drug delivery in cancer chemotherapeutic treatment. In this paper, we have introduced a new multifunctional DNA NF which could be prepared through an one-pot RCA reaction. This proposed DNA NF contained a versatile AS1411 G-quadruplex moiety, which plays key roles not only for specific recognition of cancer cells but also for near-infrared ray based photodynamic therapy when conjugating with a special porphyrin molecule. We demonstrated that the DNA NF showed good selectivity toward cancer cells, leading to highly efficient photo-induced cytotoxicity. Moreover, the in vivo experiment results suggested this DNA NF is a promising nanomaterial for clinical PDT.

2.
J Hazard Mater ; 465: 133420, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38183943

RESUMO

Rapid and highly effective removal of hexavalent chromium (Cr(Ⅵ)) is extremely vital to water resources restoration and environmental protection. To overcome the pH limitation faced by most ionic absorbents, an always positive covalent organic nanosheet (CON) material was prepared and its Cr(VI) adsorption and removal capability was investigated in detail. As-prepared EB-TFB CON (TFB = 1,3,5-benzaldehyde, EB = ethidium bromide) shows strong electropositivity in the tested pH range of 1 ∼ 10, display a pH-independent Cr(VI) removal ability, and work well for Cr(VI) pollution treatment with good anti-interference capability and reusability in a wide pH range covering almost all Cr(VI)-contaminated real water samples, thus eliminating the requirement for pH adjustment. Moreover, the nanosheet structure, which is obtained by a facile ultrasonic-assisted self-exfoliation, endows EB-TFB CON with fully exposed active sites and shortened mass transfer channels, and the Cr(VI) adsorption equilibrium can be reached within 15 min with a high adsorption capacity of 280.57 mg·g-1. The proposed Cr(VI) removal mechanism, which is attributed to the synergetic contributions of electrostatic adsorption, ion exchange and chemical reduction, is demonstrated by experiments and theoretical calculations. This work not only provides a general Cr(VI) absorbent without pH limitation, but also presents a paradigm to prepare ionic CONs with relatively constant surface charges.

3.
J Am Chem Soc ; 145(39): 21284-21292, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37703101

RESUMO

C-C single bond-linked covalent organic frameworks (CSBL-COFs) are extremely needed because of their excellent stabilities and potential applications in harsh conditions. However, strategies to generate CSBL-COFs are limited to the acetylenic self-homocoupling Glaser-Hay reaction or post-synthetic reduction of vinylene-based COFs. Exploring new strategies to expand the realm of CSBL-COFs is urgently needed but extremely challenging. To address the synthetic challenges, we for the first time developed a general approach via the reaction between aromatic aldehydes and active methyl group-involving monomers with enhanced acidity, which realized the successful construction of a series of CSBL-COFs. As expected, the obtained CSBL-COFs exhibited outstanding chemical stability, which can stabilize in 6 M NaOH, 3 M HCl, boiling water, and 100 mg/mL NaBH4 for at least 3 days. It is important to mention that CSBL-COFs possess a large amount of ionic sites distributed throughout the networks; gentle shaking allowed our COFs to easily self-disperse as nanoparticles and suspend in water for at least 12 h without reprecipitating. As far as we know, such self-dispersed COFs with high water dispersity are rare to date, and few examples are mainly limited to the guanidinium- and pseudorotaxane-based COFs. Our work thus developed a family of self-dispersed COFs for potential applications in different sorts of fields. Our contribution would thus pave a new avenue for constructing a broader class of CSBL-COFs for their wide applications in various fields.

4.
Small ; 18(4): e2104438, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34816581

RESUMO

Nanotubes with circularly polarized luminescence (CPL) are attracting much attention due to many potential applications, such as chiroptical materials, displays, and sensing. However, it remains a challenge to change the assemblies of ordinarily molecular building blocks into CPL supramolecular nanotubes. Herein, the regulation of quite common dipeptide (Fmoc-FF) assemblies into unprecedented helical nanotubes exhibiting intense CPL is reported by simply doping a few phthalocyanine (octakis(carboxyl)phthalocyaninato zinc complex (Pc)) molecules. Interestingly, altering the Fmoc-FF/Pc molar ratios over a wide range cannot change the nanotubes structures according to transmission electron microscopy (TEM) and atomic force microscope (AFM) measurements. Although molecular dynamics simulations suggest that the noncovalent interactions between Fmoc-FF and Pc are quite weak, few Pc molecules can still change the secondary structures of a large number of Fmoc-FF assemblies, which hierarchically form helical supramolecular nanotubes with long-range ordered molecular packing, leading to intense CPL signals with large luminescence dissymmetry factor (glum  = 0.04). Consequently, the chiral reorganization of Fmoc-FF assemblies is dependent on the coassembly between Pc molecule and Fmoc-FF supramolecular architectures. These results open the possibility for the fine-tuning of helix and supramolecular nanotubes with CPL properties by using a small number of cofactors.


Assuntos
Luminescência , Nanotubos , Dipeptídeos , Indóis , Isoindóis
5.
Anal Chem ; 92(9): 6470-6477, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32249564

RESUMO

Nucleic acid aptamers have been widely used in various fields such as biosensing, DNA chip, and medical diagnosis. However, the high susceptibility of nucleic acids to ubiquitous nucleases reduces the biostability of aptamers and limits their applications in biological contexts. Therefore, improving the biostability of aptamers becomes an urgent need. Herein, we present a simple strategy to resolve this problem by directly replacing the d-DNA-based aptamers with left-handed l-DNA. By testing several reported aptamers against respective targets, we found that our proposed strategy stood up well for nonchiral small molecule targets (e.g., Hemin and cationic porphyrin) and chiral targets whose interactions with aptamers are chirality-independent (e.g., ATP). We also found that the l-DNA aptamers were indeed endowed with greatly improved biostability due to the extraordinary resistance of l-DNA to nuclease digestion. With respect to other small-molecule targets whose interactions with aptamers are chirality-dependent (e.g., kanamycin) and biomacromolecules (e.g., tyrosine kinase-7), however, the proposed strategy was not entirely effective likely due to the participation of the DNA backbone chirality into the target recognition. In spite of this limitation, this strategy indeed paves an easy way to screen highly biostable aptamers important for the applications in many fields.


Assuntos
Trifosfato de Adenosina/análise , Aptâmeros de Nucleotídeos/química , DNA/química , Células HeLa , Humanos , Imagem Óptica
6.
Chem Commun (Camb) ; 56(4): 527-530, 2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-31829346

RESUMO

Towards mimicking natural photosystems, supramolecular gels containing two types of porphyrins were developed for photocatalysis. Protonation and J-aggregation of porphyrins within gels expand the absorption to a wide range of visible wavelengths. Porphyrin exciplex formation renders a smaller bandgap for photo-induced electron generation. These features induce effective photocatalytic hydrogen generation.

7.
ACS Appl Mater Interfaces ; 11(48): 45118-45125, 2019 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-31713412

RESUMO

Metal-organic frameworks (MOFs) are powerful toolkits to directly correlate structure-function relationships due to their well-defined structures. In this work, 5,15-di(3,4,5-trihydroxyphenyl)porphyrin (DTPP) and 5,10,15,20-tetra(3,4,5-trihydroxyphenyl)porphyrin (TTPP) are reacted with zirconium ions to afford two MOFs (Zr-DTPP and Zr-TTPP) with acid and base tolerance in the pH range of 1.0-14.0. Powder X-ray diffraction investigation combined with Rietveld refinement reveals the J-aggregated porphyrin building blocks confined by benzene-1,2,3-trisolate-zirconium chains in the newly prepared Zr-DTPP. Electron spin-resonance, singlet-oxygen determination, and sulfides oxidation experiments demonstrate a much better singlet-oxygen evolution of J-aggregated Zr-DTPP than that of unaggregated Zr-TTPP reported previously, in good contrast to the weaker photocatalytic capability disclosed for DTPP than that for TTPP in solution, consummating the theory of photosensitizer J-aggregation in boosting heterogeneous photoinduced singlet-oxygen generation.

8.
ACS Appl Mater Interfaces ; 11(43): 39624-39632, 2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31573175

RESUMO

To advance anti-tumor efficiency and lessen the adverse effect caused by nanodrug residues in the body, a smart nanoagent system is developed and successfully used in intracellular ATP imaging and in vivo chemo-photothermal synergetic therapy. The nanoagent system is facilely prepared using a DNA complex to modify gold nanoparticles (AuNPs). The DNA complex is formed by three oligonucleotides (ATP aptamer, rC-DNA, and rG-DNA). The CG-rich structure in a ternary DNA complex could be exploited for payload of chemotherapeutic medicine doxorubicin (DOX), thus making efficient DOX transport into the tumor site possible. In tumor cells, especially in acidic organelles (e.g., endosome and lysosome), DOX could be rapidly released via the dual stimuli of overexpressed ATP and pH. What is more, the specific recognition of a fluorescently labeled aptamer strand to ATP can achieve the intracellular ATP imaging. pH-controlled reversible folding and unfolding of intermolecular i-motif formed by C-rich strands can lead to intracellular in situ assembly of AuNP aggregates with high photothermal conversion efficiency and promote relatively facile renal clearance of AuNPs through the disassociation of the aggregates in extracellular environments. Experiments in vivo and vitro present feasibility for a synergetic chemo-photothermal therapy. Such an in situ reversible assembly strategy of a chemo-photothermal agent also presents a new paradigm for a smart and highly efficient disease treatment with reduced side effects.


Assuntos
Trifosfato de Adenosina/metabolismo , Doxorrubicina , Ouro , Hipertermia Induzida , Nanopartículas Metálicas , Imagem Molecular , Neoplasias Experimentais , Fototerapia , Animais , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacocinética , Preparações de Ação Retardada/farmacologia , Doxorrubicina/química , Doxorrubicina/farmacocinética , Doxorrubicina/farmacologia , Feminino , Ouro/química , Ouro/farmacocinética , Ouro/farmacologia , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Células MCF-7 , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias Experimentais/diagnóstico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/terapia , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Chem Commun (Camb) ; 55(53): 7603-7606, 2019 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-31199419

RESUMO

A biosensor with all the advantages of ultra-high sensitivity, easy operation, straightforward signal output and universal applicability is introduced. The biosensor was demonstrated to work well in the detection of polynucleotide kinase and DAM methyltransferase, thus providing a powerful tool for clinical diagnosis, drug screening and disease therapeutic assay.


Assuntos
Técnicas Biossensoriais , DNA/química , Técnicas de Amplificação de Ácido Nucleico , Polinucleotídeo 5'-Hidroxiquinase/análise , DNA Metiltransferases Sítio Específica (Adenina-Específica)/análise , Temperatura , Células HeLa , Humanos , Polinucleotídeo 5'-Hidroxiquinase/genética , Polinucleotídeo 5'-Hidroxiquinase/metabolismo , DNA Metiltransferases Sítio Específica (Adenina-Específica)/genética , DNA Metiltransferases Sítio Específica (Adenina-Específica)/metabolismo , Espectrometria de Fluorescência
10.
Front Chem ; 7: 336, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31157209

RESUMO

Supramolecular gels containing porphyrins and phthalocyanines motifs are attracting increased interests in a wide range of research areas. Based on the supramolecular gels systems, porphyrin or phthalocyanines can form assemblies with plentiful nanostructures, dynamic, and stimuli-responsive properties. And these π-conjugated molecular building blocks also afford supramolecular gels with many new features, depending on their photochemical and electrochemical characteristics. As one of the most characteristic models, the supramolecular chirality of these soft matters was investigated. Notably, the application of supramolecular gels containing porphyrins and phthalocyanines has been developed in the field of catalysis, molecular sensing, biological imaging, drug delivery and photodynamic therapy. And some photoelectric devices were also fabricated depending on the gelation of porphyrins or phthalocyanines. This paper presents an overview of the progress achieved in this issue along with some perspectives for further advances.

11.
Chem Sci ; 10(8): 2290-2297, 2019 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-30881654

RESUMO

DNA methylation is a significant epigenetic mechanism involving processes of transferring a methyl group onto cytosine or adenine. Such DNA modification catalyzed by methyltransferase (MTase) plays important roles in the modulation of gene expression and other cellular activities. Herein, we develop a simple and sensitive biosensing platform for the detection of DNA MTase activity by using only two oligonucleotides. The fluorophore labeled molecular beacon (MB) can be methylated by MTase and subsequently cleaved by endonuclease DpnI at the stem, giving a shortened MB. The shortened MB can then hybridize with a primer DNA, initiating a cycle of strand displacement amplification (SDA) reactions. The obtained SDA products can unfold new MB and initiate another cycle of SDA reaction. Therefore, continuous enlargement of SDA and exponential amplification of the fluorescence signal are achieved. Because the triple functions of substrate, template and probe are elegantly integrated in one oligonucleotide, only two oligonucleotides are necessary for multiple amplification cycles, which not only reduces the complexity of the system, but also overcomes the laborious and cumbersome operation that is always a challenge in conventional methods. This platform exhibits an extremely low limit of detection of 3.3 × 10-6 U mL-1, which is the lowest to our knowledge. The proposed MTase-sensing platform was also demonstrated to perform well in a real-time monitoring mode, which can achieve a further simplified and high-throughput detection. The sensing strategy might be extended to the activity detection of other enzymes, thus showing great application potential in bioanalysis and clinical diagnosis.

12.
ACS Omega ; 3(9): 10638-10646, 2018 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31459184

RESUMO

Demands related to clean energy and environmental protection promote the development of novel supramolecular assemblies for photocatalysis. Because of the distinctive aggregation behaviors, bolaamphiphiles with two hydrophilic end groups could be theoretically the right candidates for the fabrication of high-performance photocatalysis. However, photocatalytic applications based on bolaamphiphilic assemblies were still rarely investigated. Especially, the relationship between diverse assembled nanostructures and the properties for different applications is urgently needed to be studied. Herein, we demonstrate that using the hierarchical assembly of bolaamphiphiles could correctly induce the porphyrin supramolecular architectures with much better photocatalytic performances than the aggregations containing 450 times of the porphyrin molecules, even though both molecular structures as well as the J-aggregations of porphyrin building blocks are same in two different systems. Thus, the co-assembly of l-phenylalanine terminated bolaamphiphile (Bola-F) and the porphyrin containing four hydroxyl groups (tetrakis-5,10,15,20-(4-hydroxyphenyl)porphyrin) can form microtube in methanol and forms fibers/spheres in methanol/water mixture. For catalyzing the photodegradation of rhodamine B, the small amount of J-aggregated porphyrin within Bola-F microtubes show much better photocatalytic performance comparing with that of huge porphyrin J-aggregations in fibers/spheres. The supramolecular assemblies as well as the photocatalysis were thoroughly characterized by different spectroscopies and electron microscopy. It is demonstrated that the co-assembly with bolaamphiphiles could inhibit the energy transfer of porphyrin aggregation and subsequently benefit the electron transfer and corresponding photocatalysis under photo-irradiation. This work is not only useful for further understanding the hierarchically supramolecular assembly but also provides a new strategy for making novel functional supramolecular architectures based on the assembly of bolaamphiphiles and porphyrins.

13.
Lifetime Data Anal ; 23(3): 439-466, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-27118299

RESUMO

This paper studies semiparametric regression analysis of panel count data, which arise naturally when recurrent events are considered. Such data frequently occur in medical follow-up studies and reliability experiments, for example. To explore the nonlinear interactions between covariates, we propose a class of partially linear models with possibly varying coefficients for the mean function of the counting processes with panel count data. The functional coefficients are estimated by B-spline function approximations. The estimation procedures are based on maximum pseudo-likelihood and likelihood approaches and they are easy to implement. The asymptotic properties of the resulting estimators are established, and their finite-sample performance is assessed by Monte Carlo simulation studies. We also demonstrate the value of the proposed method by the analysis of a cancer data set, where the new modeling approach provides more comprehensive information than the usual proportional mean model.


Assuntos
Funções Verossimilhança , Modelos Lineares , Modelos Estatísticos , Humanos , Análise de Regressão , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...